Pretargeted PET Imaging of trans-Cyclooctene-Modified Porous Silicon Nanoparticles
نویسندگان
چکیده
Pretargeted positron emission tomography (PET) imaging based on bioorthogonal chemical reactions has proven its potential in immunoimaging. It may also have great potential in nanotheranostic applications. Here, we report the first successful pretargeted PET imaging of trans-cyclooctene-modified mesoporous silicon nanoparticles, using 18F-labeled tetrazine as a tracer. The inverse electron-demand Diels-Alder cycloaddition (IEDDA) reaction was fast, resulting in high radioactivity accumulation in the expected organs within 10 min after the administration of the tracer. The highest target-to-background ratio was achieved 120 min after the tracer injection. A clear correlation between the efficiency of the in vivo IEDDA labeling reaction and the injected amount of the tracer was observed. The radioactivity accumulation decreased with the increased amount of the co-injected carrier, indicating saturation in the reaction sites. This finding was supported by the in vitro results. Our study suggests that pretargeted imaging has excellent potential in nanotheranostic PET imaging when using high-specific-activity tracers.
منابع مشابه
18F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels–Alder Click Chemistry
A first-of-its-kind (18)F pretargeted PET imaging approach based on the bioorthogonal inverse electron demand Diels-Alder (IEDDA) reaction between tetrazine (Tz) and trans-cyclooctene (TCO) is presented. As proof-of-principle, a TCO-bearing immunoconjugate of the anti-CA19.9 antibody 5B1 and an Al[(18)F]NOTA-labeled tetrazine radioligand were harnessed for the visualization of CA19.9-expressing...
متن کاملMicro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02933g Click here for additional data file.
Pretargeted PET imaging has emerged as an effective two-step in vivo approach that combines the superior affinity and selectivity of antibodies with the rapid pharmacokinetics and favorable dosimetry of smaller molecules radiolabeled with short-lived radionuclides. This approach can be based on the bioorthogonal inverse-electron-demand Diels–Alder (IEDDA) reaction between tetrazines and trans-c...
متن کاملFast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition.
There is considerable interest in the use of bioorthogonal covalent chemistry, such as “click” reactions, to label small molecules located on live or fixed cells. Such labeling has been used for the visualization of glycans, activity-based protein profiling, the site-specific tagging of proteins, the detection of DNA and RNA synthesis, investigation of the fate of small molecules in plants, and...
متن کاملEstablishment of the In Vivo Efficacy of Pretargeted Radioimmunotherapy Utilizing Inverse Electron Demand Diels-Alder Click Chemistry.
The pretargeting system based on the inverse electron demand Diels-Alder reaction (IEDDA) between trans-cyclooctene (TCO) and tetrazine (Tz) combines the favorable pharmacokinetic properties of radiolabeled small molecules with the affinity and specificity of antibodies. This strategy has proven to be an efficient method for the molecularly targeted delivery of pharmaceuticals, including isotop...
متن کاملA Pretargeted Approach for the Multimodal PET/NIRF Imaging of Colorectal Cancer
The complementary nature of positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging makes the development of strategies for the multimodal PET/NIRF imaging of cancer a very enticing prospect. Indeed, in the context of colorectal cancer, a single multimodal PET/NIRF imaging agent could be used to stage the disease, identify candidates for surgical intervention, and facil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2017